Nous utilisons des cookies pour améliorer l'expérience utilisateur, analyser le trafic et afficher des publicités pertinentes.
En détails J'accepte
Entrez la position

Vue d'ensemble Statistiques salaires profession "Facilities Engineer en France"

Recevoir des informations statistiques par mail
Malheureusement, il n'y a pas de statistiques pour cette demande. Essayez de changer votre position ou votre région.

Postes vacants recommandés

Enhancing Radomes functionalities and active antennas performances for millimeterwave reconfigurable multibeam solutions using additive manufacturing & flex technologies
ABG, Brest, Bretagne
Description du sujetThis project is part of the framework of the Acceleration Strategy on 5G and networks of the future, and more specifically on the development of advanced technologies for 5G systems. Their development induces numerous scientific and technological challenges to be addressed in the coming years. Digital technologies offer the possibility to develop flexible and agile network architectures, with convergence of networks, distributed cloud, sensing structures and advanced applications. Both terrestrial and non-terrestrial systems will cooperate to provide such news services, through interoperability and aggregation of heterogeneous systems, for customers experience benefit. Quality of services, latency, multi-gigabit-per-second data rates, connectivity everywhere as well as energy consumption and environment impact minimization remain key challenges.Consequently, 5G imposes major technological and architectural innovations, notably radio access based on beamforming for spatial diversity and communication capability. In addition, spectrum resources will be highly solicited for providing enhanced bandwidth over wider frequency ranges, with consequently new expectations regarding millimeter wavelengths.Development of smart antennas capable of adapting their beams according to the channel within multiple bands requires going beyond conventional antenna design methods, but also to develop an electronic front-end capable of probing the immediate electromagnetic environment and controlling the antenna pattern. Advanced beamforming systems, combined with massive MIMO techniques and intelligent RF front-ends are fundamentally expected and considered as technology breakthroughs Ambitions for mmwave antennas – ObjectivesExploiting mmWave frequencies for future 5G networks appears as a fundamental ambition, bringing scientific challenges and issues regarding both new design concepts for antennas architectures and technologies toward agile and low power consumption solutions critical for the development of future mmWave communication networksThe main challenges in the millimeter band lie in the design of energy-efficient systems inducing co-designed RF circuits and antennas. The objectives are to create reconfigurable antenna solutions with beamforming and multi-users MIMO capabilities, and to design advanced digital processing techniques to manage these systems.A high-gain and wideband antennas remain mandatory at mmWave frequencies to exploit efficiently the huge available spectrum. Array solutions including thousands of elements guarantee the required power budget specifications in terms of realized gain and EIRP (Effective Isotopically Radiated Power), as well as sectorization possibilities through individual amplitude/phase controls.Nevertheless, specific investigations have to be done regarding spatial feeding techniques to achieve extremely energy efficient solutions, while preserving flexibility on multibeam radiation patterns possibilities. In particular, individual amplitude-phase planar array excitation modules have to be ideally suppressed to reduce feeding module losses.Emerging concepts are addressed by this thesis, considering new combinations of low-profile transmit-array or flat-lens architectures with alternative beamforming approaches exploiting either holographic techniques or artificial beamforming through surface impedance modulations. Indeed, a spatial surface impedance modulation controlled through holographic techniques or metamaterial structuration can be exploited to transform a reference excitation mode to guided surface mode and then to a desired radiation pattern through an appropriate controlled nearfield illumination.  A near-field illumination of the planar array can be ensured through 3D multi-materials-based radome-likely functionalities using additive manufacturing, eventually combined with flexible technologies to report tuning components for holographic mode control.Methodology - Study approach- First, an analysis of the literature will be done to position the subject in the context of millimeterwave antenna arrays, in particular with a specific attention to the generation of multiple beams, and the co-integration capacity of MIMO (Multiple Input-Multiple Output) solutions. The work will also aim to identify competing solutions such as RIS structures (Reconfigurable Intelligent Surfaces), and to assess the potential of hybrid approaches based on holographic techniques.- Secondly, the effective contribution of radomes regarding conventional beam control systems will be studied. In particular, reconfigurable radome structures illuminated by a set of primary sources will be developed. The radome is likely either to act first as a guiding structure allowing the development of a directive high-gain antenna, with main-beam deviation capabilities or not. We will investigate on technological solutions and innovative topologies, in particular on the basis of flexible technologies and/or 3D printing approaches [6, 7], with the presence of dielectric/metallic/electronic structures making it possible to locally parameterize the signal in transit- Thirdly, the generation of multiple beams, with the idea of ​​generating multiple beam shapes by hologram reconstruction, will be addressed [3, 4, 5]. Questions regarding the generation of holograms will be examined, with again the analysis and optimization of the radome structure to contribute to this multi-spots construction. We will be able tom compare the advantages of using a near field surface controled radome with respect to holographic impedance modulated surface (HIMS) [5]Prise de fonction : 01/10/2024Nature du financementFinancement public/privéPrécisions sur le financementPEPR 5GPrésentation établissement et labo d'accueilIMT AtlantiqueThe research activities will be done thesis is done in the context of the laboratory Lab-STICC – UMR CNRS 6285 at IMT Atlantique (Engineering School).  The selected student will also be associated to other activities of the research group: group meetings, seminars, social eventsIn detail, the hosting facilities for the thesis is described below:Establishment: IMT Atlantique Bretagne/Pays de la Loire (Brest campus), a high graduate engineering school (postgraduate): www.imt-atlantique.fr Laboratory: LabSTICC/DH Team : https://www.labsticc.fr/en/index/Intitulé du doctoratDoctorat en électroniquePays d'obtention du doctoratFranceEtablissement délivrant le doctoratIMT AtlantiqueEcole doctoraleED 648 - ED SPINProfil du candidatSkills: Electromagnetism, Filter & Antennas – RF Design, High Frequency CAD, 3D Additive Printing Technologies Theoretical skills: Solid background in one or more of the following domains: Theoretical and computational electromagnetics, Microwave and mm-wave antennas & components, 3D additive manufacturing techniquesTechnical skills: Experience in one more or more of the following technologies/tools: CAD Tools (HFSS, CST, etc..), Matlab, PythonProfile required: Holder of a postgraduate diploma, Master of research or engineer diploma in the domains of physic, Electromagnetisms, Antennas, high frequency components design.Fluency in English is required, a spirit of collaboration and of initiative in the face of technological challenges.Date limite de candidature  28/06/2024
Design of advanced beam-forming techniques for simultaneous scanning & communication operating modes antennas for 5G/6G OpenRAN
ABG, Brest, Bretagne
Description du sujetThis project is part of the PIEEC European initiative “Microelectronics and Communications” (Important Project of Common European Interest - PIEEC) carried by the Telco operator Orange. It aims to develop concrete solutions for the next digital decade of Europe by creating and deploying secure and sustainable digital infrastructures through “5G everywhere”. The solutions will contribute to the digital transformation of businesses through vehicular infrastructure and services (vehicle-to-X) as well as private 5G networks. Collaboration with the microelectronics sector will enable alignment of research throughout the digital value chain.The main challenge of the project as a whole is to allow the entire territory to benefit from new 5G services. This necessarily requires effective and economical solutions for radio access to ensure total coverage of France_________________________________The improvement of 5G communication networks performances brings strong constraints on the implementation of MIMO systems in the RU, with enhanced capabilities in terms of multi-beam operating modes that can be dynamically changed depending on expected data rates and environmental impact. The ability to scan and to optimize communication links, with the ambition of reducing power consumption and ensuring interoperability and multimodal connections are addressed by this thesis.As part of this proposal, we are working on the development of “Plug-in” solutions for radio access interface components at the OpenRAN (Open Radio Access Network) layer, focusing on antenna systems to provide new features.--------------------------------------------------Task 1: New beam-forming concepts – State of the art: Analysis and Specifications Based on the analysis of the limitations of “off-the-shelf” solutions, the first part of the thesis aims to identify concepts of antenna networks currently used for 5G/6G Radio Units, including in particular reconfigurability radiation properties. This involves firstly analyzing the capabilities and performances of currently available solutions, by identifying the limitations (level of reconfigurability (spacial diversity, frequency, polarization, simultaneous multi-channels), control constraints (interfaces and dual TX/Rx modes possibilities), dimensions, radiation performances (isolation, gain, ...), etc...). This state-of-the-art analysis will permit to identify expected developments and performances in terms of sensing and reconfiguration operations for Base station Units.The study of technical needs for Radio Units will also address the analysis of baseband and fronthaul functions, and especially control interfaces structures supported for the monitoring of multi-sectorial radiations. Algorithm and Analog to Digital/Digital to Analog interfaces /processors commonly used for these functionalities are necessary integrated with other subsets within a Radio Unit.  Capabilities and constraints related to such interfaces are to be identified to evaluate limitations and operational configurations of Open RAN compatible with 5G/6G supported standards.Task 2: A new paradigm for reconfigurable network antenna - Concepts & Advanced designs We will investigate new approaches, with proofs of concept allowing us to offer new radio sensing and multiple beamforming functionalities. We will contribute to the design and optimization of multi-beam antennas for spatial diversity and multi-band capabilitiesTwo research strategies can be studiedOn the one hand, we will focus our efforts on the design of array antenna systems enabling subbeam control for multi-beam spatial diversity.Secondly, it could be considered to manage frequency sub-bands distinctly in terms of beamforming to provide various coverage scenarios. One issue could be the mitigation of FR1 (Sub-6Ghz) and FR2 (millimeter waves) bands thanks to co-integrated structuresTask 3: Reconfigurable network antenna solutions offering new hybrid functionalitiesThe optimization of the radio link toward users must increasingly make it possible to consider simultaneously new performances in terms of electromagnetic footprint of the radio coverage and energy consumption of the network through better exploitation of spectral resources. We propose to investigate radio sensing techniques to better manage this radio link according to user needs and quality of service, with a better consideration of the use of radio, electromagnetic and energy resources.Prise de fonction : 01/10/2024Nature du financementFinancement public/privéPrécisions sur le financementProjet partenarial financé par la BPIPrésentation établissement et labo d'accueilIMT AtlantiqueIMT Atlantique and the laboratory Lab-STICC (www.labsticc.fr) contribute to this ambitious project, by developing specific research building blocks or components. As part of this thesis, we are working on the implementation of “Plug-in” solutions for Radio access interface components for the so-called OpenRAN (Open Radio Access Network) access network, providing new functionalities for antenna systems. The research activities will be done in the context of the laboratory Lab-STICC – UMR CNRS 6285 at IMT Atlantique (Engineering School). The selected student will also be associated to other activities of the research group: group meetings, seminars, social eventsIn detail, the hosting facilities for the thesis is described below:Establishment: IMT Atlantique Bretagne/Pays de la Loire (Brest campus), a high graduate engineering school (postgraduate): www.imt-atlantique.fr Laboratory: LabSTICC/DH Team : https://www.labsticc.fr/en/index/Intitulé du doctoratDoctorat en électroniquePays d'obtention du doctoratFranceEtablissement délivrant le doctoratIMT AtlantiqueEcole doctoraleED 648 - ED SPINProfil du candidat Skills: Electromagnetism, Filters & Antennas – RF Design, High Frequency CAD, 3D Additive Printing TechnologiesTheoretical skills: Solid background in one or more of the following domains: - Theoretical and computational electromagnetics- Microwave and mm-wave antennas & components- Technologies for antennasTechnical skills: Experience in one more or more of the following technologies/tools: CAD Tools (HFSS, CST, etc..), Matlab, Python Profile required: Holder of a postgraduate diploma, Master of research or engineer diploma in the domains of physic, Electromagnetisms, Antennas, high frequency components design. Fluency in English is required, a spirit of collaboration and of initiative in the face of technological challenges.Date limite de candidature  28/06/2024
Mesures in situ et modélisation de la dispersion d'un panache d'incendie // In situ measurements and modeling of fire plume dispersion
ABG, VILLENAVE D'ORNON
Description du sujetLes situations accidentelles étudiées sur les installations nucléaires dans le cadre d'expertises ou rencontrées lors de crises peuvent être associées à un terme source. Cela concerne les usines du cycle du combustible, les bases militaires, les centres de recherche et possiblement des situations de malveillance. Actuellement, les phénomènes de surélévation d'un panache émis depuis un point chaud sont, au mieux, traités par des approches analytiques visant à évaluer une hauteur de panache finale, au pire ignorés. Pour tenir compte des incertitudes liées aux paramètres de rejet et aux effets de rabattement du panache une pratique usuelle à l'IRSN et chez certains exploitants est de postuler un rejet au sol afin d'obtenir des ordres de grandeur conservatifs. Toutefois, pour une évaluation plus réaliste des conséquences, les outils opérationnels actuels de l'IRSN sont limités. Les approches analytiques, principalement établies pour des rejets thermiques en cheminée, ne sont actuellement pas validées par des mesures in situ et ne permettent pas d'évaluer les conséquences radiologiques aux plus courtes distances (jusqu'à quelques centaines de mètres de la source). Les modèles de CFD, tels que le modèle Calif3S de l'IRSN, permettent de simuler de façon plus précise les phénomènes d'incendie mais sont plus coûteux. Par ailleurs, très peu de données acquises in situ sont disponibles dans la littérature et il n'existe pas de données récentes documentées sur ce sujet.L'objectif de cette thèse est de modéliser la dispersion d'un panache en champ proche d'un foyer d'incendie : de quelques mètres à quelques centaines de mètres, échelle à laquelle les conditions de rejet et l'influence de la topographie (bâti compris) au voisinage immédiat du foyer ne peuvent être négligés. Cet objectif sous-entend de faire progresser la compréhension des mécanismes physiques en jeu dans la dispersion d'un panache thermique, de définir/valider une méthodologie de modélisation CFD et d'acquérir/analyser des données expérimentales de dispersion atmosphérique de gaz en champ proche d'un point chaud.L'originalité de cette thèse est (1) de s'intéresser aux mécanismes physiques en lien avec la turbulence atmosphérique dans la zone de surélévation d'un panache thermique en champ proche (quelques centaines de mètres) du foyer, (2) de combiner modélisation et mesures in situ, et (3) de coupler les modèles CFD-LES et CFD-RANS/analytique. Les simulations réalisées à partir du modèle CFD-LES permettront de générer des conditions aux limites dites équivalentes, à une distance du foyer restant à définir, qui pourront ensuite être utilisées en données d'entrée dans les modèles CFD-RANS ou analytique.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------The accidental situations studied in nuclear facilities as part of expertise or encountered during crises can be associated with a source term. This includes fuel cycle plants, military bases, research centers, and potentially malicious situations. Currently, phenomena such as plume rise from a hot point are at best addressed by analytical approaches aiming to assess a final plume height, and at worst ignored. To account for uncertainties related to release parameters and plume blow-down effects, a common practice at IRSN and among some operators is to assume a ground release to obtain conservative estimates. However, for a more realistic assessment of consequences, current operational tools at IRSN are limited. Analytical approaches, mainly established for thermal releases from stacks, are currently not validated by in situ measurements and do not allow for the evaluation of radiological consequences at the shortest distances (up to a few hundred meters from the source). Computational Fluid Dynamics (CFD) models, such as IRSN's Calif3S model, allow for a more precise simulation of fire phenomena but are more costly. Moreover, very few in situ acquired data are available in the literature, and there are no recent documented data on this subject.The objective of this thesis is to model the dispersion of a plume in the near field of a fire source: from a few meters to a few hundred meters, a scale at which release conditions and the influence of topography (including buildings) in the immediate vicinity of the source cannot be neglected. This objective implies advancing the understanding of the physical mechanisms involved in the dispersion of a thermal plume, defining/validating a CFD modeling methodology, and acquiring/analyzing experimental data on atmospheric dispersion of gas in the near field of a hot point.The originality of this thesis lies in (1) focusing on the physical mechanisms related to atmospheric turbulence in the plume rise zone of a thermal plume in the near field (a few hundred meters) of the source, (2) combining modeling and in situ measurements, and (3) coupling CFD-LES and CFD-RANS/analytical models. Simulations conducted using the CFD-LES model will generate so-called equivalent boundary conditions at a distance from the source that remains to be defined, which can then be used as input data in CFD-RANS or analytical models.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Début de la thèse : 01/10/2024Nature du financementPrécisions sur le financementAutre type de financement - bourse IRSNPrésentation établissement et labo d'accueilUniversité de BordeauxEtablissement délivrant le doctoratUniversité de BordeauxEcole doctorale304 Sciences et environnementsProfil du candidat- Master ou ingénieur en mécanique des fluides, physique de l'atmosphère, ou transferts thermiques ayant un goût pour la modélisation et l'expérimentation- Sens du travail en équipe- Excellentes capacités de rédaction- Rigueur et organisation ; esprit d'initiative et créativité ; motivation pour la recherche- Master's or Engineer's degree in fluid mechanics, atmospheric physics, or thermal transfers with a passion for modeling and experimentation- Strong team-working skills- Excellent writing abilities- Rigorous and organized; initiative and creativity; motivation for researchDate limite de candidature  29/05/2024